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Dariusz Chruściński and Andrzej Kossakowski

Institute of Physics, Nicolaus Copernicus University, Grudzia̧dzka 5/7, 87–100 Toruń, Poland
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Abstract
We present  a very simple method for constructing indecomposable
entanglement witnesses out of a given pair—an entanglement witness W

and the corresponding state detected by W . This method may be used to
produce new classes of atomic witnesses which are able to detect the ‘weakest’
quantum entanglement. Actually, it works perfectly in the multipartite case,
too. Moreover, this method provides a powerful tool for constructing new
examples of bound entangled states.

PACS number: 03.67.Bg

1. Introduction

One of the most important problems of quantum information theory [1, 2] is the characterization
of mixed states of composed quantum systems. In particular it is of primary importance
testing whether a given quantum state is separable or entangled. For low dimensional systems
there exists simple necessary and sufficient condition for separability. The celebrated Peres–
Horodecki criterion [3, 4] states that a state of a bipartite system living in C

2 ⊗ C
2 or C

2 ⊗ C
3

is separable if its partial transpose is positive, i.e. the state is PPT. Unfortunately, for higher-
dimensional systems there is no single universal separability condition.

The most general approach to characterize quantum entanglement uses a notion of an
entanglement witness (EW) [5–8]. A Hermitian operator W defined on a tensor product
H = H1 ⊗ H2 is called an EW iff (1) Tr(Wσsep) � 0 for all separable states σsep, and
(2) there exists an entangled state ρ such that Tr(Wρ) < 0 (one says that ρ is detected
by W ). It turns out that a state is entangled if and only if it is detected by some EW [5].
There have been considerable efforts in constructing and analyzing the structure of EWs
[6–15]. In fact, entanglement witnesses have already been measured in several experiments
[16, 17]. Moreover, several procedures for optimizing EWs for arbitrary states were proposed
[8, 18–20].

The simplest way to construct an EW is to define W = P + (11 ⊗ τ)Q, where P and
Q are positive operators, and (11 ⊗ τ)Q denotes partial transposition. It is easy to see that
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Tr(Wσsep) � 0 for all separable states σsep, and hence if W is non-positive, then it is an
EW. Such EWs are said to be decomposable [8]. Note, however, that decomposable EWs
cannot detect PPT entangled state (PPTES) and, therefore, such EWs are useless in search of
bound entangled state. Unfortunately, there is no general method to construct indecomposable
EW and only very few examples of indecomposable EWs are available in the literature. For
example the authors of [9] proposed very interesting method for constructing EWs based on
the knowledge of edge states. This construction works very nice provided one knows this
particular class of states. However, the general construction of edge states is not known and
hence the method of [9], although interesting and important from theoretical point of view, is
not effective.

In the present paper we propose a very simple method for constructing indecomposable
EWs. If we are given one indecomposable EW W0 and the corresponding state ρ0 detected by
W0, then we are able to construct an open convex set of indecomposable EWs detecting ρ0, and
an open convex set of PPTES detected by W0. Hence, out of a given pair (W0, ρ0) we construct
huge classes of new EWs and PPTES, respectively. In particular, we may apply this method to
construct so called atomic EWs which are able to detect the ‘weakest’ quantum entanglement
(i.e. PPTES ρ such that both Schmidt number [21] of ρ and its partial transposition (11 ⊗ τ)ρ

does not exceed 2). We stress that proposed method is very general and works perfectly for
multipartite case.

The paper is organized as follows: in the next section we introduce a natural hierarchy
of convex cones in space of EWs. This hierarchy explains importance of indecomposable and
atomic EWs. Section 3 presents our method for constructing indecomposable EWs. Section 4
provides construction of atomic EWs which is illustrated by a new class of such witnesses.
Finally, in section 5 we generalize our construction for multipartite case. A brief discussion
is included in the last section.

2. A hierarchy of entanglement witnesses

Consider a space P of positive operators in B(H1 ⊗ H2). Let us recall [21] that for any
normalized positive operator σ on H1 ⊗ H2 one may define its Schmidt number

SN(σ ) = min
pk,ψk

{max
k

SR(ψk)}, (1)

where the minimum is taken over all possible pure states decompositions

σ =
∑

k

pk|ψk〉〈ψk|, (2)

with pk � 0,
∑

k pk = 1 and ψk are normalized vectors in H1 ⊗H2. The Schmidt rank SR(ψ)
denotes the number of non-vanishing Schmidt coefficients in the Schmidt decomposition of
ψ . This number characterizes the minimum Schmidt rank of pure states that are needed to
construct such density matrix. It is evident that 1 � SN(ρ) � d, with d = min{d1, d2}, and
dk = dimHk . Moreover, ρ is separable iff SN(ρ) = 1. It was proved [21] that the Schmidt
number is non-increasing under local operations and classical communication.

Now, the notion of the Schmidt number enables one to introduce a natural family of
convex cones in P:

Vr = {ρ ∈ P|SN(ρ) � r}. (3)

One has the following chain of inclusions

V1 ⊂ . . . ⊂ Vd = P, (4)
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where d = min{d1, d2}, and dk = dimHk . Clearly, V1 is a cone of separable (unnormalized)
states and Vd�V1 stands for a set of entangled states. Note, that a partial transposition (11⊗τ)

gives rise to another family of cones:

Vl = (11 ⊗ τ)Vl , (5)

such that V1 ⊂ . . . ⊂ Vd . One has V1 = V1, together with the following hierarchy of
inclusions:

V1 = V1 ∩ V1 ⊂ V2 ∩ V2 ⊂ . . . ⊂ Vd ∩ Vd . (6)

Note, that Vd ∩ Vd is a convex set of PPT (unnormalized) states. Finally, Vr ∩ Vs is a convex
subset of PPT states ρ such that SN(ρ) � r and SN[(11 ⊗ τ)ρ] � s.

Now, in the set of entanglement witnesses W one may introduce the family of dual cones:

Wr = {W ∈ B(H1 ⊗ H2)| Tr(Wρ) � 0, ρ ∈ Vr}. (7)

One has

P = Wd ⊂ . . . ⊂ W1. (8)

Clearly, W = W1�Wd . Moreover, for any k > l, entanglement witnesses from Wl�Wk can
detect entangled states from Vk�Vl , i.e. states ρ with Schmidt number l < SN(ρ) � k. In
particular W ∈ Wk�Wk+1 can detect state ρ with SN(ρ) = k.

Finally, let us consider the following class

Ws
r = Wr + (11 ⊗ τ)Ws , (9)

that is, W ∈ Ws
r iff

W = P + (11 ⊗ τ)Q, (10)

with P ∈ Wr and Q ∈ Ws . Note, that Tr(Wρ) � 0 for all ρ ∈ Vr ∩ Vs . Hence such W can
detect PPT states ρ such that SN(ρ) � r and SN[(11 ⊗ τ)ρ] � s. Entanglement witnesses
from Wd

d are called decomposable [8]. They cannot detect PPT states. One has the following
chain of inclusions:

Wd
d ⊂ . . . ⊂ W2

2 ⊂ W1
1 ≡ W. (11)

To deal with PPT states one needs indecomposable witnesses from Wind := W�Wd
d . The

‘weakest’ entanglement can be detected by elements from Watom := W�W2
2. We shall call

them atomic entanglement witnesses. It is clear that W is an atomic entanglement witness
if there is an entangled state ρ ∈ V2 ∩ V2 such thatTr(Wρ) < 0. The knowledge of atomic
witnesses, or equivalently atomic maps, is crucial: knowing this set would enable us to
distinguish all entangled states from separable ones.

3. Detecting PPT entangled states

Suppose that a PPT entangled state ρ0 in H1 ⊗H2 is detected by an entanglement witness W0,
that is

Tr(W0ρ0) < 0. (12)

It is clear that in the vicinity of ρ0 there are other PPT entangled states detected by the
same witness W0. Let σsep be an arbitrary separable state and consider the following convex
combination

ρα = (1 − α)ρ0 + ασsep. (13)
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It is evident that ρα is PPT for any α ∈ [0, 1]. Moreover, for any 0 � α < α[ρ0,σsep], with

α[ρ0,σsep] := sup{α ∈ [0, 1]| Tr(W0ρα) < 0}, (14)

ρα is entangled. This construction gives rise to an open convex set

SPPT[W0|ρ0] := {
ρα

∣∣0 � α < α[ρ0,σsep] & aribitrary σsep
}
. (15)

All elements from SPPT[W0|ρ0] are PPT entangled states detected by W0. On the other hand
in the vicinity of W0 there are other entanglement witnesses detecting our original PPT state
ρ0. Indeed, let P be an arbitrary positive semidefinite operator in B(H1 ⊗ H2) and consider
one-parameter family of operators

Wλ = W0 + λP, λ � 0. (16)

Let us observe that for any 0 � λ < λ[W0,P ] with

λ[W0,P ] := sup{λ � 0| Tr(Wλρ0) < 0}, (17)

Wλ is an indecomposable EW detecting a PPT state ρ0. This construction gives rise to a dual
open convex set

W ind[W0|ρ0] := {
Wλ

∣∣0 � λ < λ[W0,P ] & aribitrary P � 0
}
. (18)

Summarizing, having a pair of a PPTES ρ0 and an indecomposable EW W0 we may construct
two open convex sets: SPPT[W0|ρ0] containing PPTES detected by W0 and W ind[W0|ρ0]
containing an indecomposable EW detecting ρ0. It shows that for any ρ1, ρ2 ∈ SPPT[W0|ρ0]
any convex combination

p1ρ1 + p2ρ2 ∈ SPPT[W0|ρ0], (19)

and hence defines a PPTES. Similarly, for any W1,W2 ∈ W ind[W0|ρ0] any convex combination

w1W1 + w2W2 ∈ W ind[W0|ρ0], (20)

and hence defines an indecomposable EW. Therefore, the above constructions provide a
method to produce new PPTES and new indecomposable EW out of a single pair (ρ0,W0).

Note, that this construction may easily be continued. Let us take an arbitrary EW W ′

from W ind[W0|ρ0] (different from W0). It is easy to find PPTES from SPPT[W0|ρ0] detected
by W ′: indeed, any state in SPPT[W0|ρ0] has a form (13) and hence

Tr(W ′ρα) = (1 − α) Tr(W ′ρ0) + α Tr(W ′σsep). (21)

Therefore, one has Tr(W ′ρα) < 0 for

α <
−Tr(W ′ρ0)

−Tr(W ′ρ0) + Tr(W ′σsep)
� 1. (22)

Now, W ′ and ρ ′ = ρα with α satisfying (22) define a new pair which may be used as a starting
point for the construction of SPPT[W ′|ρ ′] and W ind[W ′|ρ ′].

4. Constructing atomic entanglement witnesses

Suppose now, that we are given a ‘weakly entangled’ PPTES, i.e. a state ρ0 ∈ V2 ∩ V2 and let
W0 be the corresponding atomic EW. Following our construction we define

S2
2 [W0|ρ0] ⊂ V2 ∩ V2, (23)

such that each element from S2
2 [W0|ρ0] is detected by the same witness W0. Similarly, we

define a set of atomic witnesses

Watom[W0|ρ0] ⊂ Watom, (24)
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such that each element from Watom[W0|ρ0] detects our original state ρ0. Both sets S2
2 [W0|ρ0]

and Watom[W0|ρ0] are open and convex.
Note, that knowing atomic EWs one may detect all entangled states. Moreover, it was

conjectured by Osaka in [22] that all EWs in B(C3 ⊗ C
3) can be represented as a sum of

decomposable and atomic witnesses. To best of our knowledge this conjecture is still open. It
shows that the knowledge of atomic EWs is crucial both from physical and purely mathematical
points of view.

It is well known that there is a direct relation between entanglement witnesses in
B(H1 ⊗ H2) and linear positive maps ϕ : B(H1) −→ B(H2), i.e. maps which send positive
elements fromB(H1) into positive elements from B(H2).1 One calls a linear positive map
ϕk-positive iff the following map

ϕ(k) := idk ⊗ ϕ : B(Ck ⊗ H1) −→ B(Ck ⊗ H2), (25)

is positive (‘idk’ denotes an identity map in the matrix algebra Mk = B(Ck)). If ϕ(k) is positive
for all integers k = 1, 2, . . ., then one calls the original map ϕ completely positive.

Now, to describe relations between positive maps and Hermitian operators in B(H1 ⊗H2)

let us introduce the following notation: (e1, . . . , ed) denotes an orthonormal basis in C
d , and

eij = |ei〉〈ej |. Note, that the canonical maximally entangled state in H1 ⊗ H1

ψ+
d1

:= 1√
d1

d1∑
i=1

ei ⊗ ei, (26)

gives rise to the following operator in B(H1 ⊗ H2)

Wϕ = (idd1 ⊗ ϕ)P +
d1

, (27)

where P +
d1

= d1

∣∣ψ+
d1

〉〈
ψ+

d1

∣∣. One has therefore the following relation:

ϕ −→ Wϕ :=
d1∑

i,j=1

eij ⊗ ϕ(eij ), (28)

known as a Choi–Jamiołkowski isomorphism [23, 24]. It is shown in [23, 24] that ϕ is
a positive map if and only if Tr(Wϕσ) � 0 for any separable state σ . Moreover, ϕ is
completely positive if and only if Wϕ defines a positive operator, i.e. Tr(Wϕρ) � 0 for any
(not necessarily separable) state ρ. Summarizing, any positive but not completely positive
map ϕ : B(H1) −→ B(H2) gives rise to an EW Wϕ . If ϕ is indecomposable, i.e. it can not
be written as a sum φ1 + φ2 ◦ τ , where φ1 and φ2 are completely positive, then Wϕ defines an
indecomposable EW. If, moreover, ϕ is atomic, i.e. can not be written as a sum φ1 + φ2 ◦ τ ,
where φ1 and φ2 are 2-positive, then Wϕ defines an atomic EW.

Now, we are illustrate how our method works in practice.

4.1. Generalizing a Choi EW in 3 ⊗ 3

Let us recall the celebrated positive map ϕ : M3 −→ M3 introduced by Choi [24]:

ϕ(e11) = e11 + e22, ϕ(e22) = e22 + e33, ϕ(e33) = e33 + e11, (29)

1 Recall, that B(H1) � A � 0 if A = B∗B for some elements B ∈ B(H1).

5
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and ϕ(eij ) = −eij , for i �= j . Consider the corresponding operator in M3 ⊗ M3 which is
related via Choi–Jamiołkowski isomorphism to the Choi map. One easily finds

W0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · −1 · · · −1
· 1 · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

−1 · · · 1 · · · −1
· · · · · 1 · · ·
· · · · · · 1 · ·
· · · · · · · · ·

−1 · · · −1 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (30)

where maintaining a more transparent form we replace all zeros by dots. It was shown by Ha
[25] that W0 is atomic. The proof is based on construction of a state in V2 ∩V2 detected by W0.
Actually, Ha constructed a whole one-parameter family of such states. For any 0 < γ < 1 let
us define

ργ = 1

Nγ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1 · · · 1
· aγ · · · · · · ·
· · bγ · · · · · ·
· · · bγ · · · · ·
1 · · · 1 · · · 1
· · · · · aγ · · ·
· · · · · · aγ · ·
· · · · · · · bγ ·
1 · · · 1 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31)

with

aγ = 1
3 (γ 2 + 2), bγ = 1

3 (γ −2 + 2), (32)

and the normalization factor

Nγ = 7 + γ 2 + γ −2. (33)

It was shown [25] that ργ ∈ V2 ∩ V2 and Tr(W0ργ ) = (γ 2 − 1)/Nγ . Hence, for γ < 1
the state ργ is entangled (and W0 is an indecomposable EW).2 It is therefore clear that if
γ1, . . . , γK ∈ (0, 1), then any convex combination

p1ργ1 + . . . + pKργK
(35)

defines an entangled state in V2 ∩ V2 detected by W0.
Consider now the following maximally entangled state in C

3 ⊗ C
3:

ψ = 1√
3
(e1 ⊗ e3 + e2 ⊗ e1 + e3 ⊗ e2), (36)

2 Actually, for γ = 1 one has

ργ=1 = 1

9

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1 · · · 1
· 1 · · · · · · ·
· · 1 · · · · · ·
· · · 1 · · · · ·
1 · · · 1 · · · 1
· · · · · 1 · · ·
· · · · · · 1 · ·
· · · · · · · 1 ·
1 · · · 1 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (34)

and it is known [4] that this state is separable.

6
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and let P = 3|ψ〉〈ψ |. Define Wλ = W0 + λP . It is given by the following matrix

Wλ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · −1 · · · −1
· 1 · · · · · · ·
· · λ λ · · · λ ·
· · λ λ · · · λ ·

−1 · · · 1 · · · −1
· · · · · 1 · · ·
· · · · · · 1 · ·
· · λ λ · · · λ ·

−1 · · · −1 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (37)

and hence Tr(Wλργ ) < 0, if

λ <
1 − γ 2

2 + γ −2
. (38)

Actually, the maximal value of λ is attainable for γ ∗ =
√

(
√

3 − 1)/2 ≈ 0.605. Therefore,

taking as ρ0 the state ργ ∗ , one finds λ[W0,P ] = (1 − γ ∗2)/(2 + γ ∗−2) ≈ 0.133. This way it
is shown that Wλ, with 0 � λ < λ[W0,P ], defines an atomic EW. We may still modify Wλ by
adding for example a positive operator Q = 3|ϕ〉〈ϕ|, where

ϕ = 1√
3
(e1 ⊗ e2 + e2 ⊗ e3 + e3 ⊗ e1), (39)

that is

Wλ,µ = W0 + λP + µQ. (40)

One finds the following matrix representation

Wλ,µ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · −1 · · · −1
· 1 + µ · · · µ µ · ·
· · λ λ · · · λ ·
· · λ λ · · · λ ·

−1 · · · 1 · · · −1
· µ · · · 1 + µ µ · ·
· µ · · · µ 1 + µ · ·
· · λ λ · · · λ ·

−1 · · · −1 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41)

Now, Tr(Wλ,µργ ) < 0, if λ satisfies (38) and

µ <
1 − γ 2 − λ(2 + γ −2)

2 + γ 2
. (42)

Interestingly, applying our method to a pair (W0, ργ ) we constructed a whole class of atomic
EWs Wλ,µ which have a circulant structure analyzed in [26]. Therefore, it may be used testing
quantum entanglement within a class of circulant PPT states [26] (see also [27]). To best of

7
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our knowledge this is the first example of a ‘circulant atomic’ EW. Consider for example the
following (unnormalized) state [26]

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 · · · a12 · · · a13

· b11 · · · b12 b13 · ·
· · c11 c12 · · · c13 ·
· · c21 c22 · · · c23 ·

a21 · · · a22 · · · a23

· b21 · · · b22 b23 · ·
· b31 · · · b32 b33 · ·
· · c31 c32 · · · c33 ·

a31 · · · a32 · · · a33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (43)

where a = [aij ], b = [bij ] and c = [cij ] are 3 × 3 positive matrices. One easily finds that the
condition Tr(ρWλ,µ) < 0 leads to the following conclusion: if

Tr(2a + b + c) + Tr(J [µb + λc]) < Tr(Ja), (44)

where J = [Jij ] is a 3 × 3 matrix with Jij = 1, then ρ is an entangled PPT state.

4.2. Atomic EW in d ⊗ d

Actually, the example analyzed in the previous section may be generalized for d ⊗ d case.
Consider the following set of Hermitian operators:

Wd,k :=
d∑

i,j=1

eij ⊗ X
d,k
ij , (45)

where d × d matrices X
d,k
ij are defined as follows:

X
d,k
ij =

⎧⎪⎪⎨
⎪⎪⎩

(d − k − 1)eii +
k∑

l=1

ei+l,i+l , i = j

−eij , i �= j.

(46)

For d = 3 and k = 1 the above formula reconstructs W0 defined in (30). Again, Wd,k are
related via Choi–Jamiołkowski isomorphism to the family of positive maps [28]

τd,k(x) = (d − k)ε(x) +
k∑

l=1

ε(SlxS∗l ) − x, x ∈ Md, (47)

where ε(x) = ∑d
i=1 xiieii , and S is the shift operator defined by Sei = ei+1(mod d). The

positivity of τd,k for k = 1, . . . , d −1 was shown in [28] (for k = d −1 this map is completely
copositive) and Osaka showed that τd,1 is atomic. Finally, it was shown by Ha in [25] that it is
atomic for k = 1, . . . , k − 2. Therefore, it proves the atomicity of Wd,k . Ha’s proof is based
on the construction of the family of states ργ ∈ V2 ∩ V2:

ργ = 1

Nγ

d∑
i,j=1

eij ⊗ A
γ

ij , (48)

where d × d matrices A
γ

ij are defined as follows:

A
γ

ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eij , i �= j

e11 + aγ e22 +
d−1∑
l=3

ell + bγ edd, i = j = 1

Sj−1A11S
∗j−1, i = j �= 1,

(49)

8
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with

aγ = 1

d
(γ 2 + d − 1), bγ = 1

d
(γ −2 + d − 1), (50)

and the normalization factor

Nγ = d2 − 2 + γ 2 + γ −2, (51)

which reproduces (33) for d = 3. One shows [25] that ργ ∈ V2 ∩ V2 and Tr(Wd,kργ ) =
(γ 2 − 1)/Nγ . Hence, for γ < 1, the family of states ργ is detected by each Wd,k for
k = 1, . . . , d − 2. It is therefore clear that any convex combination

Wd [p] :=
d−2∑
k=1

pkWd,k, p = (p1, . . . , pd−2), (52)

gives rise to a new atomic EW Wd [p]. Following three-dimensional example one may easily
construct out of a pair (Wd,k, ργ ) a family of new EWs.

5. Multipartite entanglement witnesses

Let us note, that the above construction works perfectly for multipartite case. Consider N-
partite system living in H = H1 ⊗ . . . ⊗ HN . A state ρ0 in H is entangled if there exists an
entanglement witness W0 ∈ B(H1 ⊗ . . . ⊗ HN) such that:

(1) Tr(W0σsep) � 0 for all N-separable states σsep,
(2) Tr(W0ρ0) < 0.

In the multipartite case a set of PPT states may be generalized as follows. For each binary
N-vector σ = (σ1, . . . , σN) one introduces a class of σ-PPT states: ρ is σ-PPT iff

τσρ := (τ σ1 ⊗ . . . ⊗ τσN )ρ � 0. (53)

Finally, an entanglement witness W is σ-decomposable if it can be represented as the following
sum

W = Q1 + τσQ2, (54)

where Q1 and Q2 are positive operators in B(H1 ⊗ . . .⊗HN). Clearly, σ-decomposable EW
cannot detect entangled σ-PPT state.

Suppose, that an entangled N-partite σ-PPT state ρ0 is detected by σ-indecomposable
entanglement witness W0. Therefore, if σsep is an arbitrary N-separable state, then the following
convex combination

ρα = (1 − α)ρ0 + ασsep, (55)

defines σ-PPT entanglement state for any 0 � α < α[ρ0,σsep], with

α[ρ0,σsep] := sup{α ∈ [0, 1]| Tr(W0ρα) < 0}. (56)

This construction gives rise to an open convex set

SPPT
σ [W0|ρ0] := {

ρα

∣∣0 � α < α[ρ0,σsep] & aribitrary σsep
}
. (57)

Similarly, let P be an arbitrary positive semidefinite operator in B(H1 ⊗. . .⊗HN) and consider
one-parameter family of operators

Wλ = W0 + λP, λ � 0. (58)

Let us observe that for any 0 � λ < λ[W0,P ] with

λ[W0,P ] := sup{λ � 0| Tr(Wλρ0) < 0}, (59)

Wλ defines σ-indecomposable EW detecting the state ρ0. This construction gives rise to a
dual open convex set

W ind
σ [W0|ρ0] := {

Wλ

∣∣0 � λ < λ[W0,P ] & aribitrary P � 0
}
. (60)
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6. Conclusions

A simple and general method for constructing indecomposable EWs was presented. Knowing
an EW W0 and the corresponding entangled PPT state ρ0 detected by W0, one should be
able to construct new EWs and new PPTES. In particular one may apply this method to
construct new examples of atomic EWs which are crucial when distinguishing between
separable and entangled states. Moreover, one may apply the same strategy in constructing
EWs for multipartite systems also.

What can we do if only one element from the above pair is available? Note, that a
nonpositive Hermitian operator in B(H1 ⊗ H2) can always be written as a difference of two
positive operators P and Q:

W = Q − P, (61)

and, as is well known, most of known EWs have this form with Q being separable (very
often Q ∝ I1 ⊗ I2, but following [31] one can look for more general form of Q) and P being
entangled (for example maximally entangled pure state). Let W defined in (61) be an EW
detecting an NPT (and hence entangled) state P. Is this W indecomposable? One may try to
look for the states detectable by W in the following form

ρα = (1 − α)P + ασsep, (62)

where σα is a separable state. Now, mixing an NPT state P with σsep may result in a PPT state.
Hence, if ρα becomes PPT for some α > 0, and it is still detected by W , then W is necessarily
an indecomposable EW.

Conversely, given a PPTES state ρ one may try to construct the corresponding
(indecomposable) EW detecting ρ. This problem is in general very complex since it is
extremely difficult checking weather W satisfies Tr(Wσsep) � 0 for all separable σsep. One
example of such construction is provided via unextendible product bases by Terhal in [7].

It is clear, that the method presented provides new classes of indecomposable (and atomic)
linear positive maps (for recent analysis of atomic maps see [30]). In particular a positive
map corresponding to Wλ,µ defined in (41) provides a considerable generalization of the Choi
map. On may try looking for other well known positive indecomposable maps and perform
‘deformation’ within the class of indecomposable maps. Any new examples of such maps
provide an important tool for studies of quantum entanglement.
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[8] Lewenstein M, Kraus B, Cirac J I and Horodecki P 2000 Phys. Rev. A 62 052310
[9] Lewenstein M, Kraus B, Horodecki P and Cirac J I 2001 Phys. Rev. A 63 044304

[10] Kraus B, Lewenstein M and Cirac J I 2002 Phys. Rev. A 65 042327
[11] Hyllus P, Gühne O, Bruß D and Lewenstein M 2005 Phys. Rev. A 72 012321
[12] Bruß D 2002 J. Math. Phys. 43 4237
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